

Single Microdrive Neural Headstage ND1HS1

Lightweight Motorized Neural Probe Assembly for Awake Animal Neural Recording

- Single motor microdrive
- 4 microelectrode circuits
- 1 reference circuit
- 1 stimulus circuit
- Independent 3-wire motor control circuits
- Omnetics Nanominiature connector
- 1 gram total microdrive mass

Ordering Information

Motor Configuration	Part Number
MicroMo 0308A003B+03A 125:1S3	ND1HS-1

Accessories

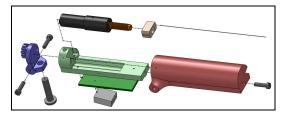
Description	Part Number
JFet Buffer Assembly	ND1BAJ-1
Tether Cable	ND1TC-1
Shuttle Assembly Fixture	ND1SAF-1
Microelectrode Capillary	ND1MEC-1

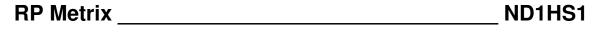
Absolute Maximum Ratings

Characteristic	Symbol	Min	Тур	Max	Unit
Microelectrode Circuit Current	Ι _Ε			10	mA
Reference Circuit Current	I _R			10	mA
Stimulus Circuit Current	I _S		0.020	100	mA
Motor Current per Winding	l _w		110	150	mA
Motor Winding Voltage	V_{W}		3.8	5.25	V

Specifications _____

Characteristic	Symbol	Min	Тур	Max	Unit
Gearhead Reduction Ratio	GR		125:1		rotor/shaft
Output Shaft Diameter	Ds		1.6		mm
Output Shaft Thread Pitch	TP		0.2		mm/rev
Shuttle Step	L _{SS}		0.27		μm
Shuttle Travel	L_{ST}			4300	μm
Shuttle Speed	V_S		1	400	μm/sec
Direction Reversal Hysterisis	H_{DR}		100		μm
Microdrive Diameter	D		5.0		mm
Microdrive Length	L		20.0		mm
Microdrive Mass	М			1.0	gm
Electrode Diameter, Tungsten	D _E		75	100	μm




Figure 1 - Headstage Exploded View 1

Key to Exploded Views

Color	Part
red	cover
light tan	shuttle
gold	lead screw
black	motor and gearbox
light green	body
dark green	printed circuit board
light grey	Omnetics connector
purple	base
black line	electrode
dark grey	screws

Figure 2 - Headstage Exploded View 2

Description _____

The ND1HS headstage incorporates a miniature motor and gear head mounted within a cylindrical body made of sturdy, lightweight, and chemically resistant anodized aluminum (See Fig. 1). The gear head reduces 125 motor rotations to one output shaft rotation. The output shaft is a threaded rod, turning in a screw thread within a sliding shuttle. The shuttle can carry from one to four tungsten electrodes. The rotational movement of the threaded rod transforms to linear movement of the shuttle at 0.2 mm per shaft revolution. The minimal motor step is 60 degrees, corresponding to 0.27 µm of longitudinal movement of the electrode(s).


To achieve reproducible electrode placement, always move them in one direction. For example, if the main direction is forward, then to move electrodes back, first retract them farther than the desired position by at least the amplitude of the hysteresis (H_{DR} = 100 μ m) and then move them forward to the desired position.

Electrodes are glued to the shuttle with epoxy. Electrical connection between electrodes and contact pads on the head stage is made using thin copper wire (40 AWG). It is recommended to embed the electrode wire connection and part of the wire close to the shuttle in epoxy.

During implantation the cup and body are fixed to the skull of the animal with dental cement. The cup and tube prevent contact by the motor and other electronics with dental cement and live tissue. To remove the headstage from the animal, gently pull the tube from the cup and remove it. The cup remains on the animal until euthanasia. Remove the dental cement from the cup by dissolving it in solvent.

The circuits for motor control, microelectrode signals, the neural reference signal, stimulus signal, and ground reference are accessed through the printed circuit board solder pads. A dual row 10-pin fine pitch connector provides an attachment point for an external tether cable.

The printed circuit board connects only to the 3 motor control leads on the headstage. Any remaining pads are connected to the multi-pin Omnetics connector. The function of these user accessible pads is defined by the electronics of the attached tether, not by the headstage itself.

RP Metrix	ND1HS1

Additional Views _____

Figure 3 - Headstage Exploded View 3

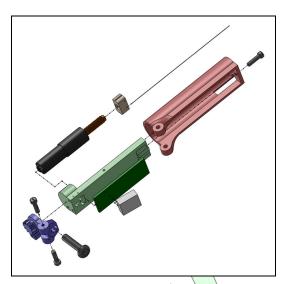
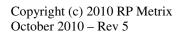



Figure 4 - Headstage Exploded View 4

Kit Assembly Information

Tool	Supplier
tap 000-120, taper chamfer, 2 flute	J.I. Morris
tap 0-80	J.I Morris or McMaster-Carr
filled epoxy, 1C-LV, # 6430A35	McMaster-Carr
rubber coating, Plasti Dip	Home Depot

ne mem	ופחוטא
 	
I/O Information	

ND1HS-NPD-10 (Omnetics Nanominiature Male) 10-Pin Interface Connector

Pin#	Signal	Pad	Input/Output	Pin#	Signal	Pad	Input/Output
1	Probe1	E1	Output	2	Reference1	R	Output
3	Probe2	E2	Output	4	MotA	Α	Input
5	Ground	G		6	MotB	В	Input
7	Probe3	E3	Output	8	MotC	С	Input
9	Probe4	E4	Output	10	Stimulus1	S	Input

Electrode Pad Information _____

Fig. 6 shows the top layer of the headstage flex printed circuit boards. The exploded views in this document show the B29 PCB and the corresponding 10-pin connector. All electrode, reference and stimulus connections are accessable on this layer. In the **I/O Information** table above, the **Pad** column refers to the pad labels shown in this figure. The pads for the 10-pin interface connector are not labeled in this figure. For B29, there are 4 pads for electrode circuits ('E1' to 'E4'), one pad for the reference circuit ('R'), one pad for the stimulus circuit ('S') and one pad for the ground circuit ('G'). The other PCB options have only a subset of these pads. The C02 and C04 options have extra pads on the same circuits, in case repeated connections to electrodes damages one set of pads.

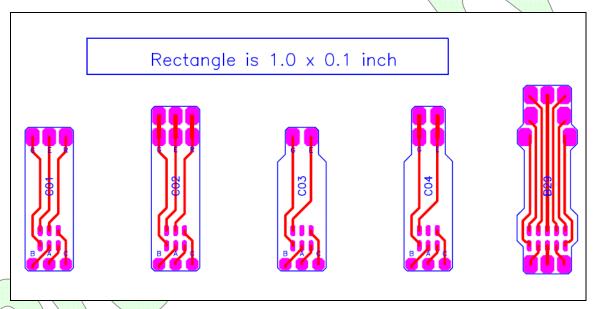


Figure 6 - Headstage PCB Options (Top Surface)